Using SmarterMeasure Data to Help Measure the Impact of Other Student Services

Michelle Borckardt, MPA Mary Xiong, MBA Dr. Mac Adkins, Moderator

Housekeeping

- Participants will be muted
- Use chat in Zoom to ask questions

SmarterServices

- Webinar will be recorded
- Please participate in survey

2002 Year Established

1000+ Client Institutions Served

1,500,000+

Assessments Proctored

6.5 Million Students Assessed for Readiness

• SmarterServices

Assessment Services

• SmarterServices

SmarterMeasure

First to market and industry leader in non-cognitive assessment and taken by over 6 million students

SmarterProctoring

First and only complete proctoring management system that accommodates all proctoring modalities

Agenda

- Introduction to the SmarterMeasure Learning Readiness Indicator
- 2. Implementation Plan
- 3. Quasi-experimental Research Designs
- 4. Tutoring Outcomes Analysis

Poll -Familiarity and Comfort Level With Data

Scales and Subscales

INTERNAL

Individual Attributes

Motivation, control over procrastination, willingness to ask for help, locus of control, time management, persistence, academic attributes

Learning Preferences

Based on the multiple intelligences model

EXTERNAL

Life Factors

Availability of time, support from family and employers, appropriate place for studying, health, finances

Scales and Subscales

SKILLS

Reading On-screen reading rate and recall

Technical Competency

Skills test of digital learning skills and the degree to which technology is integrated into a person's life

LMS Competency

Familiarity of and skills with using a learning management system

Technical Knowledge Knowledge of terms related to learning in a technology rich environment

> Keyboarding Rate and accuracy

OTHER

Cognitive Math readiness – Fractions, factoring, decimals, equations, percentage, integers currency, time, geometry, computation

Writing readiness – Grammar, usage, style, structure, apprehension

Additional

Essay questions, self-rating items, student resource inventory

Poll - RESULTS

: SmarterServices

Implementation Plan

Gateway Technical College

- Southeast Wisconsin tri-county area: Racine, Kenosha, Walworth
- Public 2-year college
- 2022 enrollment: 7,814 program students (3,209 FTEs)
- Open Access many at risk students
 - 52% economically disadvantaged
 - 18% single parents
 - Mostly part-time, working adults
 - Est. 40% housing insecure and 31% food insecure
- 62% retention rate (year 1 to year 2)
- 45% 3rd year graduation rate

A Solution for Retention: First Year Seminar

Gateway to Success

- 1 credit course
- Mandatory for all associate degree and technical diploma students
- Course Description:

In this course, students explore the Gateway Technical College community. They examine college resources and services, investigate skills that lead to academic success, and identify strategies for achieving educational and personal goals.

Leveraging the SmarterMeasure Assessment for Retention

First Year Experience

SmarterMeasure

- Get them early
- Greater response rates
- Online readiness
- Assess risk and develop referral systems

Assessment volume increased with the start of Gateway to Success

of Assessments Over Time

Calendar Year

Tutoring at Gateway

- Tutoring offered onsite and virtually (e.g., Zoom)
- Appointments and drop-in tutoring available
- General hours of operation (adjusts semester-to-semester based on demand) M-Th 9am - 7pm; Fri 9-2
- Professional tutors and peer tutors available
- Avg. duration 1.6 hours per session
- Most common courses English Comp 1 and Quantitative Reasoning

Tutoring at Gateway

- Assessing student goals for the tutoring session
- Assessing student's current skills and scaffolding new skills
- Use strategies that empower students to learn and apply to concepts
- Use of reciprocal questioning
- Retrieval practice and feedback centered on growth mindset language
- The person doing the work is doing the learning (modeling behaviors but not doing the work for the student)
- Continuous communication between tutors, leadership, and classroom instructors
- Utilize data to drive tutor hiring and hours of tutor offerings (time, subject, and length of hours)
- A majority of our tutors are content specialists, not professional educators (current constraint)

Tutoring at Gateway

What makes for an effective tutoring program at Gateway:

"Continuous communication between tutors, leadership & classroom instructors."

"Retrieval practice and feedback centered on growth mindset language."

Program Evaluation & Research Design

Research Question

Is tutoring an effective intervention?

If so, how effective is it?

Does it increase course pass rates?

Is it related to retention or graduation in any way?

Experimental Design

Treatment group (the real drug)

Control group (the placebo)

Simple Comparison

Tutoring Recipients

Those who didn't receive tutoring

Matching Comparison Group

Tutoring Recipients (treatment group)

Those who didn't receive tutoring (Apples = comparison group)

Matching Comparison Group

Simple Comparison Group

Matching Comparison Group

"Nearest Neighbor"

Why Use the SmarterMeasure Assessment?

SmarterMeasure Scales Utilized

INTERNAL

Individual Attributes Motivation, control over procrastination, willingness to ask for help, locus of control, time management, persistence, academic attributes SKILLS

EXTERNAL

Life Factors Availability of time, support from family and employers, appropriate place for studying, health, finances

Technical Competency Skills test of digital learning skills and the degree to which technology is integrated into a person's life

Technical Knowledge

Knowledge of terms related to learning in a technology rich environment

Selecting a Matching Tool

- We chose the SmarterMeasure assessment for these reasons:
 - Non-cognitive traits
 - Feasibility
 - Timing
 - Response rates

Side note - if you use this methodology to evaluate programs that have certain eligibility requirements, make sure you account for those in your matching process as well

E.g. if you have a support program for women in STEM, then your matching comparison group should also only include women in STEM

Data Preparation and Analysis

The Step-by-Step Process

01

Prepare the Data 02

Run SPSS Case-Control Matching 03

Compare outcome variables between groups

Prepare the Data

Student

Data

Tutoring

Data

Smarter-Measure Scale Data Enrollment records Course completion rates Retention and graduation rates

Dates of use Duration of each session Course

Individual Attributes

Technical Competency

Technical Knowledge

Life Factors

<u>Combine</u> <u>into master</u> <u>data set</u>

Connect data sets using Student ID

Master Data Set (all students)

Comparison Group (Matched students who did not use tutoring)

Intervention Group (Students who used tutoring)

Unmatched Students (Students who were not matched)

Outcomes Analysis

Course Completion Rates

100%

Students who used any amount of tutoring during their first year at Gateway had almost 6 percentage points higher course completion rates than those who used no tutoring.

Pre and Post Data

Year 1 (pre-assessment): Neither group used tutoring

Year 2 (post-assessment):

- The tutoring group experienced an 8.2 pp increase in course completion rates
- The comparison group experienced an 8.7 pp decline in completion rates.

English Comp 1 - Course Completion Rates

Students who received tutoring for English Composition 1 had 24 percentage points higher course completion rates. Students who used tutoring for Quantitative Reasoning had 4 percentage points higher course completion rates.

Quantitative Reasoning - Course Completion Rates

2nd Year Retention Rates

100%

Students who used any amount of tutoring during the first year had slightly higher 2nd year retention rates.

The difference was <u>not</u> statistically significant (could be a result of chance).

The difference was <u>not</u> statistically significant (could be a result of chance).

Assessment Comments

- Tutoring demonstrates a **positive impact on course completion rates** overall.
 - On a course level, this was especially true for English Comp 1 but also for Quantitative Reasoning to a lesser extent.
- Any impact on retention and graduation rates was inconclusive.

Next Steps

Future IR Goals

- Implement data warehouse to improve the data collection and transformation process
- Case-control assessment of...
 - Orientation
 - Academic advising (it's not mandatory at Gateway)
 - HEADS UP mentoring program
 - Promise Program
 - Scholarship/Emergency grant recipients
- Regression analysis for students who receive more than one form of intervention

Future Retention Goals

- Early risk assessment
- Automated service referrals
- Integrate into advising and support processes

Questions and Answers

Research - Michelle Borckardt, MPA borckardtm@gtc.edu

Implementation - Mary Xiong, MBA

xiongm@gtc.edu

SmarterMeasure - Dr. Mac Adkins

mac@smarterservices.com

SPSS Instructions for Case-Control Matching

F_POINTS	LF_PLACE	REASO	RCES	🗞 LF_SKILLS	💑 LF_TIME	PA_POINTS	PA_ACADE MICATTRIB UTES	RA_HELPSE	PA_LOCUS OFCONTRO L	PA_PERSIS
77	14		17	15	14		15			11
69	14	17	11	11	16	67	14	10		11
									× 8	10
								-	13	14
		Variables to Ma						Opti	ons 11	11
	^	🖧 PERSONAL						Additiona	13	13
								Againona		10
		A TECHKNON							11	10
		A TECHCOM	5						15	11
									10	11
									11	11
									12	12
									9	10
		Match Talaana							11	11
		Match Tolerance	95.					_	10	13
		0000							10	12
		If matches have	a tolerance (fuz:	z) factor enter the	e tolerance				10	9
		for each match	variable separate	d by blanks					10	9
		Group Indicator:							10	12
		A Tutoring Us	age [TutoringUs:	agel					10	12
		The second se	5 1 5	3-1					12	14
	-	Case ID:	0						9	9
		🛷 Student ID							13	12
		Names for Matc	h ID Variables (r	nust not already	exist):				7	10
		Match_ID							10	13
		The number of n	ames entered d	etermines the nu	mber			_	11	11
PECIFIC.				ariable. Only one					10	10
				output dataset is					9	14
	~	Name for Match	group Variable (i	must not already	aviet)				11	7
		MGV	group vanable (i	nust not alleady	existj.				13	13
		WGV							7	13
	OK	Paste Res	et Cancel	Help					9	9
										12
78	17	17	19	14	11	70	11	10		8
73	17	16	16	17	7		14	12		12
82	17	17	18	14	16	74	15	11	11	12
75	18	18	12	18	9	66	13	11	9	11

Q Search application

-

Step-by-Step Process

Run SPSS Case-Control Matching

(F) (G)

Ø	×	🚰 Case-Control Matching			×
		Variables: PERSONALATTRIBUTESPCT TECHKNOWLEDGEPCT	Â	Variables to Match on: PERSONALATTRIBUTES A LIFEFACTORS	<u>O</u> ptions Additional Output
Mer	iu: Data / Case C	Control Matching	•	A TECHKNOWLEDGE	
(A)	variables or othe	ning "covariates" (SmarterMeasure scale er variables you want to use for identifying	в	Match Tolerances:	
(B)		e - for categorical variables, use a 0 e for each matching variable		0 0 0 0 If matches have a tolerance (fuzz) factor enter the tolerance for each match variable separated by blanks	
(C)	Group Indicator they received th	- binary variable describing whether or not e intervention		Group Indicator: Tutoring Usage [TutoringUsage] Case ID:	
(D)	Case ID - Stude represent each	nt ID (or whatever variable is used to student record)		Student ID [StudentID] <u>Names for Match ID Variables (must not already exist)</u>	
(E)	Match ID - add r coded number th	new variable name here; this will generate a nat matches one student from the up with one student from the comparison	P	Match_ID The number of names entered determines the number of matches for each demander variable. Only one name can be specified if an additional output dataset is created	
(F)	group (both will	have same code) "" for match group variable	Ð	Name for Matchgroup Variable (must not already exist): MGV	
(G)		click Additional Output	OK	Paste Reset Cancel Help	

Create Output for Matched Comparison Group

(A) Check the box "Create new dataset of matches"

- (B) Give it a name
- (C) Click Continue and then Ok

This will open a new SPSS window including only your matched students from the comparison group (those who did <u>not</u> receive tutoring).

Options		TRIB ES	EKING	PA_LOCUS OFCONTRO L	TENCE	ASTINA
ditional Outpu	ut	15	6	9	11	
		14	10	10	11	
F		15	13	8	10	
						×
			the demander	lata for supplier c case.	ases useu	
A B	and Only Ac	the id of y one ma Iditional] <u>C</u> reate D <u>a</u> taset I	the demander atch per deman Output Dataset new dataset of	case. der case can be		ption.
	and Only Ac	the id of y one ma Iditional] <u>C</u> reate D <u>a</u> taset I	the demander atch per deman Output Dataset new dataset of Name:	case. der case can be matches		ption.

Double-Check Your Work

You should now have two SPSS datasets:

- 1. Your original file (includes all records; the new Match_ID field has some blank rows and some rows with data)
- 2. Your new data file ("Comparison_Group"; includes comparison group data records; Match_ID field should have data in all rows; tutoring usage or other group indicator variable should be all the 0s)

Also check the sample size of your comparison group. If your sample is too small for a strong analysis, you may need to decrease the number of matching variables or increase your fuzz tolerance. However, you don't want to make these too lenient, where your comparison group no longer closely matches your intervention group. This should be an iterative process of optimizing your sample size and while limiting fuzz tolerance.

Create output for Treatment Group (part 1)

		0 0 0 0	
.0		X Select Cases: If	Х
1.20	Select		
.0 Student ID [Stu ^	O <u>A</u> II cases	match_id	id ~= 0
.01 PERSONALAT A	If <u>c</u> ondition is satisfied	K_HIGHEREDUCATION_T	
.01 RERSONALAT	B If	TK_HIGHEREDUCATION_T	
.01 PECHKNOWLE	O Random sample of cases	↓ TK_HIGHEREDUCATION_T ↓ COMPOSITESCORE	In original dataset, go to:
	Sample	Tutoring Usage [TutoringUs	
	O Based on time or case range	Blank	
8.5. VIFEFACTORS		Yr1 Course Completion [Yr	Menu: Data/Select Cases
.0 🚜 LIFEFACTORS	Range	Yr2 Course Completion [Yr *	
.0 / LF_POINTS	O <u>U</u> se filter variable:	Yr 3 Course Completion [Yr	
.01 & LF_PLACE	*	Blank [Blank_A]	(A) Check "If condition is
.01 & LF_REASON		✓ Yr 1 Tutoring Duration [Yr1 ✓ Yr 2 Tutoring Duration [Yr2	
	Output	Yr 3 Tutoring Duration [Yr3	satisfied"
0 & LF_TIME	<u> Filter</u> out unselected cases	Blank [Blank_B]	
.0 PA_POINTS	O Copy selected cases to a new dataset	💦 Yr1 Treatment Group [Yr1Tr	(B) Click "If"
.01 💦 PA_ACADEMIC	Data <u>s</u> et name:	💊 Yr1 5+ Hrs [Yr15Hrs]	. ,
.01 RA_HELPSEE	O Delete unselected cases	Yr2 Treatment Group [Yr2Tr	(C) Move your Match ID into the
.01 🚴 PA LOCUSOF 🗸		A Yr3 Treatment Group [Yr3Tr	formarile leave
.0(Current Status: Do not filt	ercases	C A match id	formula box
.0((D) Add functions: $\sim = 0$
.0(OK	Paste Reset Cancel Help		(D) Add functions: ~= 0
.0000000.000000000.000000		0 0 0 0	-
			$\pm i$ \cdot

This will select the cases where the Match_ID is <u>not</u> null or 0, which selects your treatment group.

Create Output for Treatment Group (part 2)

In the pop-up, click "Continue," but don't click "Ok" yet.

In the original dialog box...

- (A) Select radial for "Copy selected cases to a new dataset"
- (B) Give new dataset a name such as
 "Treatment_Group" or
 "Intervention_Group"

A	Select
Student ID [Stu PERSONALAT PERSONALAT TECHKNOWLE TECHCMPPCT TECHCOMP LIFEFACTORS LIFEFACTORS LIF_POINTS LF_PLACE LF_REASON LF_RESOURCES	 ○ <u>A</u>ll cases ● If <u>c</u>ondition is satisfied <u>[f]</u> match_id ~= 0 ○ Random sample of cases <u>Sample</u> ○ <u>B</u>ased on time or case range Range ○ <u>U</u>se filter variable: <u>○</u>
	O Filter out unselected cases
	 Copy selected cases to a new dataset
PA_ACADEMIC PA_HELPSEE PA LOCUSOF Y	B Data <u>s</u> et name: Treatment_Group O De <u>l</u> ete unselected cases
urrent Status: Do not filte	er cases

Double-Check Your Work

You should now have <u>three</u> SPSS datasets:

- 1. Your original file (includes all records; the new Match_ID field has some blank rows and some rows with data)
- 2. Your new data file ("Comparison_Group"; includes comparison group data records; Match_ID field should have data in all rows; tutoring usage or other group indicator variable should all be 0s)
- 3. Your new data file ("Treatment_Group"; includes treatment group data records; Match_ID field should have data in all rows; tutoring usage or other group indicator variable should all be 1s)

Merge Treatment and Comparison Groups to Create New Final Data Set

In your treatment group file, click on the Menu: Data / Merge Files / Add Cases

- (A) Select the Comparison_Group data set
- (B) Click Continue
- (C) Click Ok on the next pop-up

Double-Check Your Work

In the Treatment_Group dataset, you should now also have the Comparison_Group data added into the data.

Items to check:

- Every single row should have data in the Matching_ID field
- For the original group variable you had selected (for us, "Tutoring Usage"), you should have all the 1s in the first several rows, and all the 0s in the last several rows

Compare Groups for Similarity of Matching Variables

For categorical data, we will run a chi-square test to make sure that the distribution of students in the different SmarterMeasure scales are well-matched between the intervention and comparison groups.

- (A) Click Analyze
- (B) Descriptive Statistics
- (C) Crosstabs

■ *U	Intitled5	[Treatment_Grou	p] - IBM SPSS Sta	atistics Data Editor							
Eile	Edit	<u>V</u> iew <u>D</u> ata	I A	Analyze Grap	ohs <u>U</u> tilities	Extensions	Window Help				
-				Power Analy	/sis	>			arch application		
_	III.			Meta Analys		>	-1 🔠 14 🔪		arch application		
				1000 No. 10	515	,					
	IER	TK_HIGHER	TK_HIGHER	- Reports		,	. Vr1CourcoCompl	. Vr9CourcoComp	Yr3CourseCompl	🔏 Blank_A	
		EDUCATION		Descriptive :	Statistics	>	Erequencies		etion		4
	OL.	_TECHNOL.	_TECHNOL.	Compare M	eans and Propor	tions >	Descriptives				
1	17	14	9	General Line	ear Model	>	Population Des		.0000000000000000		. 1.
2	12	16	4	Correlate		,	Population Des	criptives	.0000000000000000		. 8.
3	14	7	7				A Explore		000000000000000000000000000000000000000		. 0.
5	16	19	9	Regression		C	Crosstabs		.692307692307692		. 6.
6	20	15	9	Classify		>	TURF Analysis		1.0000000000000000000000000000000000000		
7	12	14	8	Dimension F	Reduction	>			1.0000000000000000000000000000000000000		. 6.
8	7	9	7	Scale		>	Matio		1.0000000000000000000000000000000000000		
9	6	9	5	Nonparamet	ric Tosts	,	E Proportion Conf	idence Intervals	.83333333333333333333333333333333333333		. 93
10	11	11	3		ne resis		P-P Plots		1.0000000000000000000000000000000000000		. 1.
11	8	14	4	Forecasting		>			.333333333333333333333		. 1.
12	13	8	5	Multiple Res	sponse	>	Marchael Contension of the second sec		1.0000000000000000000000000000000000000		
13	7	10	7	Simulation			.8333333333333333333	.80000000000000000000	1.0000000000000000		
14	9	11	7	Quality Con	trol	,	.0000000000000000	1.0000000000000000000000000000000000000	.777777777777777778		. 6.3
15	9	12	10	the second second			.578947368421053	.5000000000000000	.904761904761905		
16	10	15	10	Spatial and	Temporal Model	ing >	.00000000000000000	.00000000000000000	.60000000000000000000		. 11
17	7	10	6	67.84	1		1.0000000000000000	.00000000000000000	1.0000000000000000		
18	11	15	8	79.78	1		. 1.0000000000000000	1.0000000000000000000000000000000000000	1.0000000000000000		. 8.
19	15	10	5	66.04	1		. 1.0000000000000000	.833333333333333333	3 1.0000000000000000		. 15
20	5	13	9	61.62	1		500000000000000	.6666666666666666	.00000000000000000000000000000000000000		. 17
21	6	9	7	66.49	1		. 1.000000000000000	.6666666666666666	.0000000000000000		. 14
22	20	16	10	81.35	1		384615384615385	.894736842105263	3 .769230769230769		. 1.2
23	19	10	4	78.11	1		. 1.000000000000000	.8000000000000000	1.000000000000000		
24	8	16	9	78.11	1		800000000000000	1.0000000000000000	1.0000000000000000000000000000000000000		
25	10	8	7	68.65	1		. 1.000000000000000	.384615384615385	5.714285714285714		(
26	16	15	9	78.92	1		. 1.000000000000000	1.0000000000000000000000000000000000000	1.0000000000000000000000000000000000000		0
27	12	12	10	84.86	1		666666666666666	1.0000000000000000000000000000000000000	1.0000000000000000000000000000000000000		. 2.0
28	10	11	7	67.30	1		1.00000000000000000	.875000000000000000000000000000000000000	1.0000000000000000		

Compare Groups for Similarity of Matching Variables

Note - use chi-square if the variables are categorical; use t-test if the variables are numerical

Compare Groups for Similarity of Matching Variables

The SPSS output will provide the following charts for each variable.

Yellow Circle - your cross tab should show the same number of students in each category (fail, pass, questionable) for both the students who used and did not use tutoring.

Green Circle - the p-value should be 1.000, showing that the treatment and comparison groups are <u>not</u> significantly different when it comes to this variable

Check these charts for every single variable used in the matching process. If you find variables that are significantly different between students who did and did not use tutoring, then something went wrong, and you'll need to re-run the matching procedures.

Tutoring Usage * PERSONALATTRIBUTES

		Cross	tab		
Count					
		NALATTRIE	UTES		
		fail	pass	question	Total
Tutoring Usage	0	140	25	251	416
	1	140	25	251	416
Total		280	50	502	832

C	hi-Square	Tests	
	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	.000ª	2	1.000
Likelihood Ratio	.000	2	1.000
N of Valid Cases	832		

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 25.00.

Save SPSS File and/or Export to Excel

Assuming everything looks good, you can now save the final SPSS file. Give it a new name (don't use "treatment group") since now it includes both the treatment and comparison groups.

This final combined file is what you will use for analyzing your student outcome variables (e.g. course pass rates; retention/graduation rates).

You can also export the data to excel if you prefer to run your analyses in different statistical packages such as R.

Note - You do not need to keep the other SPSS files unless you would like a record of your work.

